
Transforming Government IT | govcio.com
© 2022 GovCIO. All Rights Reserved.

Overview

Over the past few decades, a growing challenge within the government space has been the continued use of
mainframes that ran decades-old applications, some of which had been written in customized languages that
fit the agency’s mission. One such federal agency that faced this challenge was The Department of Housing
and Urban Development (HUD).

The Technology Modernization Fund (TMF), authorized in 2017 and disbursed by the General Services
Administration (GSA), provided HUD with the opportunity and resources to modernize many of its critical
applications that ran on a mainframe.

Mainframe to
Cloud Migrations

Tackling the Complexities of

The Challenge

To get allocated funds from GSA’s TMF, HUD needed a proven contracting team to deliver a feasible solution
for modernizing its critical legacy applications. These applications, which ran on the same Unisys mainframe
and were written in COBOL code, included:

•	 The Computerized Home Underwriting Management System (CHUMS) - Supports Home Ownership
Centers (HOCs) staff in the processing of single-family mortgage insurance applications, from initial receipt
through endorsement. This system conducts thousands of transactions with external resources daily.

•	 Credit Alert Verification Reporting System (CAIVRS) - Used by multiple federal agencies to determine if a
loan applicant has outstanding federal debt that is in default or foreclosure status.

•	 The Line of Credit Control System (LOCCS) - A disbursement and cash management system that
distributes over $28 billion annually for grants and subsidies.

CLIENT The Department of Housing and Urban Development (HUD)

The Department of Housing and Urban Development (HUD)

https://govcio.com/
https://govcio.com/

Transforming Government IT | govcio.com
© 2022 GovCIO. All Rights Reserved.

GovCIO’s Solution

Team GovCIO worked extensively to establish a holistic
mainframe migration process for federal customers that
improves organizational performance while minimizing risk.

After identifying HUD’s need, GovCIO (formerly Salient
CRGT) partnered with The Software Revolution, Inc.
(TSRI), a leading provider of autoamted application
modernization and refactoring, to proactively develop
a working prototype for HUD that demonstrated the
efficacy and viability of this process. HUD used this
prototype to support its application for TMF funding.
Once granted the funding, HUD awarded a sole-source
contract to Team GovCIO for this effort.

Using our nine-step process, GovCIO and TSRI rapidly
migrated HUD from their COBOL-based mainframes to a
modern Azure-based cloud service, all while preventing
negative impacts to their mission, day-to-day operations,
and security.

Define Project Goals
HUD had five key goals:

•	 Shutdown the Unisys Mainframe.

•	 Complete in two years or less.

•	 Prevent disruption to critical business functions.

•	 Support ongoing updates and enhancements,
including legislative and regulatory changes in
parallel.

•	 Minimize the need for program area decisions.

1.	 Define Project Goals
2.	Inventory System Components
3.	Identify Unique Technical

Challenges
4.	Finalize Project Approach and Plan
5.	Create Test Strategy
6.	Migrate Data Stores
7.	 Execute Automated Code

Conversion
8.	Refactor Legacy Code
9.	Build Externals

9 Steps from COBOL to Cloud

System Component Inventory
GovCIO performed a comprehensive system
inventory, including reviewing all intersecting
platforms. Our team analyzed system logs and
presented our findings to stakeholders to help them
determine which system components could be
retired prior to the conversion.

Identify Unique Technical Challenges
The inventory phase identified several technical
challenges:

Challenge Approach Selected

The predominant user interface (UI) resided within
ColdFusion and the communication between the COBOL
programs and the ColdFusion servers used an obsolete API.

We kept the existing UI and replaced the API with restful web service calls
between the ColdFusion tier and the converted COBOL code.

The core system relied heavily on the Unisys hierarchical
database (DMS).

We performed an automated conversion of the DMS data structures
and associated data access code to relational tables and SQL code.
Corresponding unload and load routines were created to move the data.

The use of a NETEX API for bidirectional transaction
communication with systems running on the IBM mainframe.

We replaced this API with restful web service calls between the systems.

The web interface to the system is used by 25-30K external
users daily. The response time of converted code, database,
and platform had to deliver comparable response times.

We incorporated performance testing and measurement into our overall
automated test approach from the outset of the project.

The following paragraphs elaborate how Team GovCIO specifically used our process to successfully migrate
the applications to Azure.

https://govcio.com/
https://govcio.com/

Transforming Government IT | govcio.com
© 2022 GovCIO. All Rights Reserved.

Create Testing Strategy
The project goals and approach made developing our
testing strategy a straight-forward process. Our team
had to make sure the converted system performed
exactly as the existing system did, and it needed to do
so in the same amount of time or faster. Testing was
broken into two primary workstreams- online and batch.

Online Testing - Since the project team chose to
maintain the existing user interface, we selected
a Selenium-based test suite for testing. Prior to
converting code, our testers began creating automated
test scripts. As the automated refactoring solution
iteratively converted the code, the testing team ran
the tests against the legacy and target platforms.
The test suite automatically compared results to
identify any differences. The same test suite and test
cases were used for performance testing to simulate
production loads and gather performance metrics.

Batch Testing- Like with online testing, the batch
programs ran on the legacy and target platforms. Our
team compared outputs using binary compare utilities
to ensure there were no unexplained differences.

Migrate Data Stores
The systems each had three primary data stores to
migrate- a DMS database, an RDMS database, and
40 years’ worth of archive data. All data stores were
to be migrated to Microsoft SQL Server.

As the RDMS database was the most straight-forward
data store, we migrated it to the test environment
within the first two weeks of the project. In tandem
with the COBOL conversion, our team converted DMS
data. These data structures were converted from
hierarchical to relational, extract and load programs
were created, and then the data was loaded into MS
SQL. Migrating the archive data was more tedious as
the processing data collected over the past 40 years
contained several data discrepancies.

Automated Code Conversion
GovCIO brought on our trusted partner, TSRI
to execute the code conversion. TSRI used it
automation-based engine that converts 100% of code
ingested. The conversion process produced several
artifacts, in addition to the converted code, which
would help our project team with troubleshooting and
eventually maintaining the converted code. One of the
most helpful artifacts TSRI helped us produce was an

HTML based blueprint of the system. This blueprint
allowed our developers to easily compare the original
COBOL code and resultant Java code side-by-side.

Legacy Code Refactoring
Throughout the project, our team identified COBOL
code most effective by first modifying in COBOL and
then re-convert during the next conversion cycle. To
identify this, we used a combination of AI conversion
techniques in our testing efforts. In most cases, it was
apparent that the COBOL compiler and runtime were
much more forgiving than the Java code. The most
prevalent, and easiest to illustrate example of this is
array index checking. While Java code does strict index
boundary checking, COBOL does not. Any code we
updated to support the migration was released into
production with maintenance releases.

Results

The project was completed in two phases. Phase
one comprised the Housing systems, CHUMS and
CAIVRS. Phase-two covered the CFO system, LOCCS.

While we planned the phase-one go-live for a
three-day weekend to allow for the migration and
unforeseen challenges, the system and data migration
was complete in just 14 hours. The go-live decision was
made on day two. The system went live on schedule
with a normal production workload. The phase two
migration, planned for a normal two-day weekend, was
successfully completed in under 24 hours.

On day one of the system going live, CHUMS
supported 25,356 users and 299,715 transactions
with only three user problems reported. In the first
30 days after the LOCCS migration from the Unisys
to Azure, the system disbursed just over 2.7 billion
dollars in program funds without error.

The successful completion of the project solved
one of the longest standing and most complex
IT challenges facing HUD – moving these mission
critical systems off the legacy mainframe platform.

As HUD was among the first to make use of the TMF
funding for this type of initiative, HUD’s success
can also be viewed as a significant endorsement of
what agencies can achieve with TMF funding. Team
GovCIO proved a rapid, highly accurate migration
of mainframe systems to Cloud services is possible,
even for critical complex projects such as HUD’s.

https://govcio.com/
https://govcio.com/

